The size of the brain is a frequent topic of study within the fields of anatomy, biological anthropology, animal science and evolution. Measuring brain size and cranial capacity is relevant both to humans and other animals, and can be done by weight or volume via MRI scans, by skull volume, or by neuroimaging intelligence testing.
The relationship between brain size and intelligence has been a controversial and frequently investigated question. In 2021 scientists from Stony Brook University and the Max Planck Institute of Animal Behavior published findings showing that the brain size to body size ratio of different species has changed over time in response to a variety of conditions and events.
As Kamran Safi, researcher at the Max Planck Institute of Animal Behavior and the study’s senior author writes:
“Sometimes, relatively big brains can be the end result of a gradual decrease in body size to suit a new habitat or way of moving—in other words, nothing to do with intelligence at all.”
Peter Richerson and Boyd point out disadvantages to large brain-size.
Proponents of recent changes in brain size draw attention to the gene mutation that causes microcephaly, a neural developmental disorder that affects cerebral cortical volume. Similarly, sociocultural explanations draw attention to externalization of knowledge and group decision-making, partly via the advent of of distributed cognition, social organization, division of labor and sharing of information as possible causes.
+ Brain sizes of hominids ! Name ! Brain size (cm3) | |
Homo habilis | 550–687 |
Homo ergaster | 700–900 |
Homo erectus | 600–1250 |
Homo heidelbergensis | 1100–1400 |
Homo neanderthalensis | 1200–1750 |
Homo sapiens | 1400 |
Homo floresiensis | 417 |
The majority of efforts to demonstrate this have relied on indirect data that assessed skull measurements as opposed to direct brain observations. These are considered scientifically discredited.
A large-scale 1984 survey of global variation in skulls has concluded that variation in skull and head sizes is unrelated to race, but rather climatic heat preservation, stating "We find little support for the use of brain size in taxonomic assessment (other than with paleontological extremes over time). Racial taxonomies which include cranial capacity, head shape, or any other trait influenced by climate confound ecotypic and phyletic causes. For Pleistocene hominids, we doubt that the volume of the braincase is any more taxonomically 'valuable' than any other trait."
However, Yaki (2011) found no statistically significant gender differences in the gray matter ratio for most ages (grouped by decade), except in the 3rd and 6th decades of life in the sample of 758 women and 702 men aged 20–69. The average male in their third decade (ages 20–29) had a significantly higher gray matter ratio than the average female of the same age group. In contrast, among subjects in their sixth decade, the average woman had a significantly larger gray matter ratio, though no meaningful difference was found among those in their 7th decade of life.
Total cerebral and gray matter volumes peak during the ages from 10–20 years (earlier in girls than boys), whereas white matter and ventricular volumes increase. There is a general pattern in neural development of childhood peaks followed by adolescent declines (e.g. synaptic pruning). Consistent with adult findings, average cerebral volume is approximately 10% larger in boys than girls. However, such differences should not be interpreted as imparting any sort of functional advantage or disadvantage; gross structural measures may not reflect functionally relevant factors such as neuronal connectivity and receptor density, and of note is the high variability of brain size even in narrowly defined groups, for example children at the same age may have as much as a 50% differences in total brain volume. Young girls have on average relative larger Hippocampus volume, whereas the are larger in boys. However, multiple studies have found a higher synaptic density in males: a 2008 study reported that men had a significantly higher average synaptic density of 12.9 × 108 per cubic millimeter, whereas in women it was 8.6 × 108 per cubic millimeter, a 33% difference. Other studies have found an average of 4 billion more neurons in the male brain, corroborating this difference, as each neuron has on average 7,000 synaptic connections to other neurons.
Significant dynamic changes in brain structure take place through adulthood and aging, with substantial variation between individuals. In later decades, men show greater volume loss in whole brain volume and in the frontal lobes, and temporal lobes, whereas in women there is increased volume loss in the Hippocampus and parietal lobes. Men show a steeper decline in global gray matter volume, although in both sexes it varies by region with some areas exhibiting little or no age effect. Overall white matter volume does not appear to decline with age, although there is variation between brain regions.
Research measuring brain volume, P300 auditory evoked potentials, and intelligence shows a dissociation, such that both brain volume and speed of P300 correlate with measured aspects of intelligence, but not with each other. Evidence conflicts on the question of whether brain size variation also predicts intelligence between siblings, as some studies find moderate correlations and others find none. A recent review by Nesbitt, Flynn et al. (2012) points out that crude brain size is unlikely to be a accurate measure of IQ. Brain size is known to differ between men and women, for example (men on average have larger bodies than women), but without well documented differences in IQ. A 2017 study found that the brains of women have a higher density of grey matter, which could compensate for the loss of volume.
A discovery in recent years is that the structure of the adult human brain changes when a new cognitive or motor skill, including vocabulary, is learned. Structural neuroplasticity (increased gray matter volume) has been demonstrated in adults after three months of training in a visual-motor skill, as the qualitative change (i.e. learning of a new task) appear more critical for the brain to change its structure than continued training of an already-learned task. Such changes (e.g. revising for medical exams) have been shown to last for at least 3 months without further practicing; other examples include learning novel speech sounds, musical ability, navigation skills and learning to read mirror-reflected words.
This power law formula applies to the "average" brain of mammals taken as a whole, but each family (cats, rodents, primates, etc.) departs from it to some degree, in a way that generally reflects the overall "sophistication" of behavior.
When the mammalian brain increases in size, not all parts increase at the same rate. In particular, the larger the brain of a species, the greater the fraction taken up by the Cerebral cortex. Thus, in the species with the largest brains, most of their volume is filled with cortex: this applies not only to humans, but also to animals such as dolphins, whales or elephants. The evolution of Homo sapiens over the past two million years has been marked by a steady increase in brain size, but much of it can be accounted for by corresponding increases in body size. There are, however, many departures from the trend that are difficult to explain in a systematic way: in particular, the appearance of modern man about 100,000 years ago was marked by a decrease in body size at the same time as an increase in brain size. Even so, it is noteworthy that , which became extinct about 40,000 years ago, had larger brains than modern Homo sapiens.
Not all investigators are happy with the amount of attention that has been paid to brain size. Roth and Dicke, for example, have argued that factors other than size are more highly correlated with intelligence, such as the number of cortical neurons and the speed of their connections. Moreover, they point out that intelligence depends not just on the amount of brain tissue, but on the details of how it is structured. It is also well known that , , and are quite intelligent even though they have small brains.
While humans have the largest encephalization quotient of extant animals, it is not out of line for a primate. Some other anatomical trends are correlated in the human evolutionary path with brain size: the basicranium becomes more flexed with increasing brain size relative to basicranial length.
Knowledge of the volume of the cranial cavity can be important information for the study of different populations with various differences like geographical, racial, or ethnic origin. Other things can also affect cranial capacity such as nutrition. It is also used to study correlating between cranial capacity with other cranial measurements and in comparing skulls from different beings. It is commonly used to study abnormalities of cranial size and shape or aspects of growth and development of the volume of the brain. Cranial capacity is an indirect approach to test the size of the brain. A few studies on cranial capacity have been done on living beings through linear dimensions.
However, larger cranial capacity is not always indicative of a more intelligent organism, since larger capacities are required for controlling a larger body, or in many cases are an adaptive feature for life in a colder environment. For instance, among modern Homo sapiens, northern populations have a 20% larger visual cortex than those in the southern latitude populations, and this potentially explains the population differences in human brain size (and roughly cranial capacity). Neurological functions are determined more by the organization of the brain rather than the volume. Individual variability is also important when considering cranial capacity, for example the average Neanderthal cranial capacity for females was 1300 cm3 and 1600 cm3 for males.Stanford, C., Allen, J.S., Anton, S.C., Lovell, N.C. (2009). Biological Anthropology: the Natural History of Humankind. Toronto: Pearson Canada. p. 301 Neanderthals had larger eyes and bodies relative to their height, thus a disproportionately large area of their brain was dedicated to somatic and visual processing, functions not normally associated with intelligence. When these areas were adjusted to match anatomically modern human proportions it was found Neanderthals had brains 15-22% smaller than in anatomically-modern humans. When the neanderthal version of the NOVA1 gene is inserted into stem cells it creates neurons with fewer synapses than stem cells containing the human version.
Parts of a cranium found in China in the 1970s show that the young man had a cranial capacity of around 1700cm at least 160,000 years ago. This is greater than the average of modern humans.
In an attempt to use cranial capacity as an objective indicator of brain size, the encephalization quotient (EQ) was developed in 1973 by Harry Jerison. It compares the size of the brain of the specimen to the expected brain size of animals with roughly the same weight.Campbell, G.C., Loy, J.D., Cruz-Uribe, K. (2006). Humankind Emerging: Ninth Edition. Boston: Pearson. p346 This way a more objective judgement can be made on the cranial capacity of an individual animal. A large scientific collection of brain endocasts and measurements of cranial capacity has been compiled by Holloway.Holloway, Ralph L., Yuan, M. S., and Broadfield, D.C. (2004). The Human Fossil Record: Brain Endocasts: The Paleoneurological Evidence. New York. John Wiley & Sons Publishers (http://www.columbia.edu/~rlh2/PartII.pdf and http://www.columbia.edu/~rlh2/available_pdfs.html for further references).
Examples of cranial capacity
Other animals
Cranial capacity
See also
Further reading
|
|